Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

animation of one possible knight's tour on a chess board
animation of one possible knight's tour on a chess board
The knight's tour is a mathematical chess problem in which the piece called the knight is to visit each square on an otherwise empty chess board exactly once, using only legal moves. It is a special case of the more general Hamiltonian path problem in graph theory. (A closely related non-Hamiltonian problem is that of the longest uncrossed knight's path.) The tour is called closed if the knight ends on a square from which it may legally move to its starting square (thereby forming an endless cycle), and open if not. The tour shown in this animation is open (see also a static image of the completed tour). On a standard 8 × 8 board there are 26,534,728,821,064 possible closed tours and 39,183,656,341,959,810 open tours (counting separately any tours that are equivalent by rotation, reflection, or reversing the direction of travel). Although the earliest known solutions to the knight's tour problem date back to the 9th century CE, the first general procedure for completing the knight's tour was Warnsdorff's rule, first described in 1823. The knight's tour was one of many chess puzzles solved by The Turk, a fake chess-playing machine exhibited as an automaton from 1770 to 1854, and exposed in the early 1820s as an elaborate hoax. True chess-playing automatons (i.e., computer programs) appeared in the 1950s, and by 1988 had become sufficiently advanced to win a match against a grandmaster; in 1997, Deep Blue famously became the first computer system to defeat a reigning world champion (Garry Kasparov) in a match under standard tournament time controls. Despite these advances, there is still debate as to whether chess will ever be "solved" as a computer problem (meaning an algorithm will be developed that can never lose a chess match). According to Zermelo's theorem, such an algorithm does exist.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


The region between two loxodromes on a geometric sphere.
Image credit: Karthik Narayanaswami

The Riemann sphere is a way of extending the plane of complex numbers with one additional point at infinity, in a way that makes expressions such as

well-behaved and useful, at least in certain contexts. It is named after 19th century mathematician Bernhard Riemann. It is also called the complex projective line, denoted CP1.

On a purely algebraic level, the complex numbers with an extra infinity element constitute a number system known as the extended complex numbers. Arithmetic with infinity does not obey all of the usual rules of algebra, and so the extended complex numbers do not form a field. However, the Riemann sphere is geometrically and analytically well-behaved, even near infinity; it is a one-dimensional complex manifold, also called a Riemann surface.

In complex analysis, the Riemann sphere facilitates an elegant theory of meromorphic functions. The Riemann sphere is ubiquitous in projective geometry and algebraic geometry as a fundamental example of a complex manifold, projective space, and algebraic variety. It also finds utility in other disciplines that depend on analysis and geometry, such as quantum mechanics and other branches of physics. (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals